Preliminary communication

Activation of carbon-carbon bond in the Mn-mediated cycloaddition reaction between disilacyclobutene and cyclohepta-1,3-diene

Hui-Jean Chiang and Chao-Shiuan Liu
Department of Chemistry, National Tsing Hua University, Hsinchu (Taiwan, ROC)

(Received February 28, 1992)

Abstract

The cycloaddition reaction between 1,1,2,2-tetrafluoro-1,2-disilacyclobutene and cyclohepta-1,3-diene mediated by $\mathrm{CpMn}(\mathrm{CO})_{3}$ under photochemical conditions generates the product $\mathrm{SiF}_{2}\left({ }^{\mathrm{I}} \mathrm{Bu}\right) \mathrm{C}=$ $\overrightarrow{\mathrm{CHSiF}_{2} \mathrm{CH}-\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2} \text { resulted from a } \mathrm{C}-\mathrm{C} \text { cleavage of the cycloheptadiene, a process }}$ involving the conversion of a σ-bonded Mn -cyclobutane derivative to a Mn -carbene intermediate.

We have demonstrated that under the mediation of metal carbonyl derivatives, tetrafluorodisilacyclobutene and conjugate dienes undergo a variety of reaction pathways which can be controlled by the electronic and steric properties of the metal and the dienes [1]. The fine-tuning scheme of this reaction system can be illustrated as shown in Scheme 1.

For cyclic conjugate dienes, the reactions proceed almost exclusively via the 1,2-addition pathway [2]. However, when the reaction between 1 and cyclohepta-1,3-diene was mediated by $\mathrm{CpMn}(\mathrm{CO})_{3}$, in addition to the expected products of 1,2-addition (7), products ($8 \mathbf{a} / \mathbf{8 b}$, a pair of diastereoisomers) [3*] formed via the cleavage of a $\mathrm{C}-\mathrm{C}$ bond of the cycloheptadiene were obtained.

When the reaction of $\mathrm{CpMn}(\mathrm{CO})_{3}$ and cyclohepta-1,3-diene in a benzene solution was carried out under photochemical conditions in a quartz tube at room

[^0]

Scheme 1.
temperature, compound 9 was obtained in 80% yield. Compound 9 was identified by elemental analysis, mass spectrum and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies [4*] in the solution and X-ray diffraction in the solid state (Fig. 1). It appears that under the irradiation, cyclohepta-1,3-diene rearranges to [3,2,0]bicyclohept-6-ene [5] before forming the olefin complex 9 with Mn .

Fig. 1. Crystal structure of compound 9. Selected bond distances (\AA) and bond angles (${ }^{\circ}$): $\mathbf{M n}-\mathbf{C (8)}$ $2.174(8), \mathrm{Mn}-\mathrm{C}(9) 2.164(8), \mathrm{C}(8)-\mathrm{C}(9) 1.377(12), \mathrm{C}(8)-\mathrm{C}(11) 1.500(12), \mathrm{C}(9)-\mathrm{C}(10) 1.530(12), \mathrm{C}(10)-$ $\mathrm{C}(11) 1.572(14)$; C(1)-Mn-C(8) 81.8(4), C(1)-Mn-C(9) 108.5(4), C(2)-Mn-C(8) 108.1(4), C(2)-Mn-C(9) 82.1(4), C(8)-Mn-C(9) 37.0(3), C(9)-C(8)-C(11) 94.7(7), C(8)-C(9)-C(10) 92.7(7), C(9)-C(10)-C(11) 86.1(6).

(9)

Irradiating 9 with 1 in a quartz tube or a Pyrex tube generates compound 8a/8b as the only reaction product with 70% yield based on 9 .

Alternatively, compound 8a/8b could be obtained (with 55% yield based on 10) by first reacting $\mathrm{CpMn}(\mathrm{CO})_{3}$ with 1 to form the disilametallacycle intermediate 10 [1c], then irradiating 10 with $\mathrm{C}_{7} \mathrm{H}_{10}$ in a quartz tube.

$$
\begin{equation*}
\mathrm{CpMn}(\mathrm{CO})_{3}+1 \xrightarrow[\mathrm{RT}]{\xrightarrow{h \nu(>254 \text { or }>366 \mathrm{~nm})}} \quad \mathrm{Cp}(\mathrm{CO})_{2}{\mathrm{Mn}-\mathrm{SiF}_{2} \mathrm{CH}=\mathrm{C}\left({ }^{t} \mathrm{Bu}\right)}_{\mathrm{SiF}_{2}} \tag{10}
\end{equation*}
$$

$\mathbf{1 0}+\mathrm{C}_{\mathbf{7}} \mathrm{H}_{10} \xrightarrow[\mathrm{RT}]{\boldsymbol{h \nu}(>254 \mathrm{~nm})} \mathbf{8 a} / \mathbf{8 b}$
These observations strongly suggest a reaction mechanism for the formation of compound $\mathbf{8 a} / \mathbf{8 b}$ as illustrated in Scheme 2. The conversion of the σ-bonded

Scheme 2.
metal-cyclobutane derivative to a metal-carbenc intermediate has recently been demonstrated by a number of workers [6].

Details of the crystal data, lists of bond distances, bond angles and atomic parameters are available from the authors.

References and notes

1 (a) C.H. Lin, C.Y. Lee, and C.S. Liu, Organometallics, 6 (1987) 1861; (b) idem, ibid, 6 (1987) 1869; (c) idem, ibid., 6 (1987) 1878; (d) idem, ibid., 6 (1987) 1882; (e) T.T. Tzang, C.Y. Lee and C.S. Liu, ibid., 7 (1988) 1265; (f) T.T. Tzang and C.S. Liu, ibid., 7 (1988) 1271.

2 C.H. Lin, C.Y. Lee, T.T. Jzang, C.C. Lin and C.S. Liu, J. Organomet. Chem., 356 (1988) 325.
3 Compound $8 \mathbf{8} / \mathbf{8 b}$, a colourless liquid, a pair of diastereoisomers (ratio 3:2). MS: m/z 308 (\mathbf{M}^{+}, $\left.\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), \quad 293\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), \quad 280\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), \quad 265\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), \quad 251$ $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), 215\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Si}_{2} \mathrm{~F}_{4}{ }^{+}\right), 57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right) .{ }^{19} \mathrm{~F}$ NMR (8a or 8 bb$): \delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 128.8$ (ddd); 132.9 (dd); 135.1 (ddd); 139.6 (dd); (8b or 8a): 129.7 (ddd); 134.1 (dd); 134.6 (ddd); 138.2 (dd). ${ }^{1} \mathrm{H}$ NMR: δ 1.1 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$); 4.96 (s); $5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=2\right) ; 2.18\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 1.43\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ; 2.14\left(\mathrm{~m}, \quad 1 \mathrm{H},-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 2.73(\mathrm{~m}, \quad 1 \mathrm{H},-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}-\stackrel{1}{\mathrm{C}} \mathrm{H}-\mathrm{C}=) ; 0.84(\mathrm{~m}$, $\left.1 \mathrm{H},-\left(\mathrm{SiF}_{2}\right)_{2}-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}-\right) ; 6.54\left(\mathrm{tt}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{SiF}_{2}-\right.$). ${ }^{13} \mathrm{C}$ NMR: $\delta 29.46$ (s(q), $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right) ; 37.42$ (s(s), $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right) ; 181.80\left(\mathrm{tt}(\mathrm{tt}),\left({ }^{\mathrm{t}} \mathrm{Bu}\right)-\stackrel{\mathrm{II}}{\mathrm{C}}-\right) ; 141.11\left(\mathrm{tt}(\mathrm{dtt}),-\mathrm{SiF}_{2}-\stackrel{\mathrm{I}}{\mathrm{C}} \mathrm{H}\right) ; 12.01\left(\mathrm{~m}(\mathrm{dm}),\left(-\mathrm{SiF}_{2}\right)_{2}-\mathrm{CH}-\right)$; 38.24 (s(d), $-\stackrel{\|}{\mathrm{C}}-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{-}-\mathrm{CH}_{2}-$); 35.22 ($\mathrm{s}(\mathrm{t}),-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$); 23.66 ($\mathrm{s}(\mathrm{t}),-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$); 31.97 $\left(\mathrm{s}(\mathrm{t}),-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}}-\right.$); $156.57\left(\mathrm{~s}(\mathrm{~s}), \mathrm{CH}_{2}=\stackrel{\mathrm{C}}{\mathrm{C}}-\right.$); $105.61\left(\mathrm{~s}(\mathrm{t}), \mathrm{CH}_{2}=\stackrel{\mathrm{C}}{\mathrm{C}}-\right.$).
4 Compound 9, a yellow solid, decomposes at $98-99^{\circ} \mathrm{C}$. MS: $m / z 270\left(M^{+}, \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{MnO}_{2}{ }^{+}\right.$); 242 $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{MnO}^{+}\right) ; 214\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Mn}^{+}\right) ; 148\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MnO}^{+}\right) ; 120\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mn}^{+}\right) ; 94\left(\mathrm{C}_{7} \mathrm{H}_{10}{ }^{+}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.83\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ; 1.46\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$); 2.49 (d, $2 \mathrm{H},=\mathrm{CH}-$ $\mathrm{CH}-\mathrm{CH}_{2}-$); $3.35(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ; 3.90\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 24.41\left(\mathrm{~s}(\mathrm{t}),-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-$); 30.84 (s(t), $-\mathrm{CH}-\mathrm{CH}_{2}-$); 48.67 ($\mathrm{s}(\mathrm{d}),=\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-$); 61.14 ($\left.\mathrm{s}(\mathrm{d}),-\mathrm{CH}=\mathrm{CH}-\right)^{2}$; 84.43 (s(d), $\mathrm{C}_{5} \mathrm{H}_{5}$); 234.8 ($\mathrm{s}(\mathrm{s}), \mathrm{CO}$). Crystal data: $\mathrm{MnC}_{14} \mathrm{H}_{15} \mathrm{O}_{2}, M=270.1$, orthorhombic, space group Pna $2_{1}, a=17.903(3), b=6.1993(10), c=11.0401(18) \AA ; U=1225.3(3) \AA^{3} ; Z=4 ; D_{c}=1.465 \mathrm{mg} \mathrm{m}^{-3} ;$ $\lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.7107 \mathrm{~A}$, crystal size $0.05 \times 0.40 \times 0.40 \mathrm{~mm}^{3}, F(000)=551.92,2 \leq 2 \theta \leq 50^{\circ} .1134$ reflections were collected; $R=0.036$.
5 (a) W.G. Dauben and R.L. Cargil, Tetrahedron, 12 (1961) 186; (b) O.L. Chapman, D.J. Pasto, G.W. Borden and A.A. Griswold, J. Am. Chem. Soc., 84 (1962) 1220.
6 (a) D.J. Crowther, S. Tivakornpannarai and W.M. Jones, Organometallics, 9 (1990) 739; (b) Y. Stenstrom and W.M. Jones, ibid., 5 (1986) 178; (c) Y. Stenstrom, G. Klanck, A. Koziol, G.J. Palenik and W.M. Jones, ibid., 5 (1986) 2155; (d) J.R. Lisko and W.M. Jones, ibid., 4 (1985) 944; (e) Y. Stenstrom, A.E. Koziol, G.J. Palenik and W.M. Jones, ibid., 6 (1987) 2079.

[^0]: Correspondence to: Dr. C.S. Liu.

 * Reference number with asterisk indicates a note in the list of references.

